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Abstract

How to characterize properties of a quantum system subject to an intense time-periodic
drive? We shall address this question within the framework of Floquet theory. According to
Floquet theorem, the solutions of the time-dependent Schrödinger equation display a quasi-
stationary evolution, governed by quasi-energies, and a periodic part. Working in the Sambe
space, it is possible to evaluate both the so-called quasi-energy spectrum and the Floquet
functions without resorting to perturbation theory in the strength of the time-periodic part
of the Hamiltonian or other commonly used approximations. Noticeably, the quasi-energy
spectrum can be qualitatively different from the one of the undriven Hamiltonian, opening
pathways to manipulate properties of quantum systems by a time-periodic drive.
These concepts will be illustrated on the example of a strongly driven two-level system.
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Chapter 1

Introduction

1.1 Outline

How to steer and characterize properties of matter by a time-periodic drive, e.g. intense
microwave or optical fields, has been object of investigation since the early days of quantum
mechanics. Nowadays pathways to manipulate material properties by a time-periodic drive
are often dubbed as Floquet engineering. They are based on the observation that the time
evolution and steady state of a quantum system under time-periodic driving can be described
in terms of a Floquet Hamiltonian, whose quasi-eigenenergy spectrum can be entirely differ-
ent from the spectrum of the undriven Hamiltonian. In these notes we shall introduce the
basics of Floquet theory and discuss its applications to the simple yet not trivial case of a
driven two-level system. The outline is as follows:

1. Floquet theorem

2. The driven two-level system

1.2 Basic literature

• J. H. Shirley, Solution of the Schrdinger equation with a Hamiltonian periodic in time,
Phys. Rev. 138 B979 (1965)

• J.Hausinger and M. Grifoni, Dissipative two-level system under strong ac driving: A
combination of Floquet and Van Vleck perturbation theory, Phys. Rev. A 81 , 022117
(2010).

1.3 Floquet theorem

Consider the time-dependent Schrödinger equation

i~∂t|ψ(t)〉 = Ĥ(t)|ψ(t)〉 , (1.1)
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for a Hamiltonian being periodic in time

Ĥ(t+ T ) = Ĥ(t) , T = 2π/ω . (1.2)

Then Floquet theorem states that the Schrödinger equation is solved by

|ψα(t)〉 = e−iEαt/~|uα(t)〉 , (1.3)

where |uα(t + T )〉 = |uα(t)〉 are periodic in time and called Floquet functions. The quasi-
energies Eα ∈ R are real parameters, as ensured by the hermiticity of Ĥ; they contribute a
phase to the time-evolution, as the energies do for time-independent problems. The Floquet
factors and the quasi-energies are obtained as eigenfunctions and eigenvalues, respectively,
of the Floquet Hamiltonian:

HF (t)|uα(t)〉 =
[
Ĥ(t)− i~∂t

]
|uα(t)〉 = Eα|uα(t)〉 , (1.4)

as it soon follows by inserting Eq. (1.3) in the time-dependent Schrödinger equation. Note
that |uα,n(t)〉 ≡ e−inωt|uα(t)〉 yields a solution of Eq. (1.1) physically identical to Eq. (1.3) but
with shifted eigenenergies Eα,n ≡ Eα−~nω. Furthermore, Eα,0 = Eα and |uα,0(t)〉 = |uα(t)〉.
Hence, it will be sufficient to examine the set of eigenvalues {Eα,n} with −~ω/2 ≤ Eα,n ≤
~ω/2. In the following we look for solutions of the Floquet equation

HF (t)|uα,n(t)〉 = Eα,n|uα,n(t)〉 . (1.5)

Notice that the quasi-energy spectrum can exhibit degeneracies any time that one satisfies
the condition

Eα,n = Eβ,m , α 6= β , m 6= n . (1.6)

This equality can be interpreted as a resonance induced by the absorption or emission of
photons. Such resonance is shown in Fig. 1.1 for the case of a longitudinally driven two-level
system (TLS).

1.3.1 Sambe space

The strength of Floquet theory is to enable one to recast the time-dependent Floquet equa-
tion for vectors leaving in the Hilbert space H into a time-independent problem in the larger
Sambe space S = H ⊗ T , where T is the Hilbert space of the T -periodic functions. In
particular, the inner product in T is defined as

(f, g) :=
1

T

∫ T

0

dtf ∗(t)g(t) . (1.7)

The functions {ϕl(t) = e−ilωt , l ∈ Z} build a complete set of T , where we further define
for a basis-independent notation the state vectors |l), with ϕl(t) = (t|l) and ϕ∗l (t) = (l|t) .
Furthermore, the completeness and orthogonality relations are

1

T

∫ T

0

dt|t)(t| = 1 ,
∑
l

|l)(l| = 1 , (1.8)
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and
(t|t′) = δ(t− t′) , , (l|m) = δl,m . (1.9)

respectively.
In the extended Sambe space S = H⊗T vectors are indicated as |·〉〉, with |uα(t)〉 = (t|uα〉〉;
the inner product is defined as

〈〈·|·〉〉 :=
1

T

∫ T

0

dt〈·|·〉 . (1.10)

Consider now a generic time-periodic Floquet vector |uα,n(t)〉 leaving in the Hilbert space
H. We can expand it in Fourier series, thus getting an expansion in basis functions of T .
We otain

|uα,n(t)〉 =
∑
l′

ei(l
′−n)ωt|u(l′)

α 〉 =
∑
l

e−ilωt|u(n−l)
α 〉 , (1.11)

where |u(k)
α 〉 are Fourier coefficients. In the composite Sambe space we define

|uα,n〉〉 ≡
∑
l

|u(n−l)
α 〉 ⊗ |l) , (1.12)

such that |uα,n(t)〉 = (t|uα,n〉〉.
In the Sambe space the Floquet Hamiltonian is an infinite matrix. Furtermore, it is diagonal
in the basis spanned by the vectors {|uα,n〉〉}, and with entries provided by the quasi-energies
Eα,n.

Note: Fourier expansion

The Floquet vector can be be further spanned by the basis vectors {|ν〉}, where ν indicates
a collective set of quantum numbers. Then it holds in the basis {|ν〉} the expansion

|uα(t)〉 =
∑
ν

cαν (t)|ν〉 , cαν (t+ T ) = cαν (t) , (1.13)

whereby
cαν (t) = 〈ν|uα(t)〉 . (1.14)

We can expand the coefficients cαν (t) in Fourier series. This yields

|uα(t)〉 =
∑
ν

cν(t)|ν〉 =
∑
l

∑
ν

cαν,le
−ilωt|ν〉 , (1.15)

where

cαν,l = (ϕl, c
α
ν ) =

1

T

∫ T

0

dteilωtcαν (t) (1.16)

are the time-independent Fourier coefficients in an expansion of the vector |uα(t)〉. At the
same time, we can work in the Sambe space and define the vectors

|uα〉〉 ≡
∑
l

∑
ν

cαν,l|ν〉 ⊗ |l) =
∑
l

∑
ν

cαν,l|ν, l〉〉 , (1.17)
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such that |uα(t)〉 = (t|uα〉〉, and

cαν,l = 〈〈ν, l|uα〉〉 =
1

T

∫ T

0

dteilωt〈ν|uα(t)〉 =
1

T

∫ T

0

dt〈ν|uα,−l(t)〉 . (1.18)

1.4 The driven two-level system

As a first example we investigate a two-level system (TLS), i.e., a quantum system with two
relevant states, subject to periodic driving. It can describe e.g. a spin 1/2 in oscillating
magnetic field, a two-level atom in an electric field, or any kind of quantum bit (qubit)
subject to a time-periodic drive. We first consider the exactly solvable case of driving being
diagonal in the eigenbasis of the undriven system. Then we turn to the generic case in which
the system is no longer exactly solvable due to an additional transverse coupling.

1.4.1 Longitudinal two-level system

Let us start by considering the driven two-level Hamiltonian

ĤTLS(t) = Ĥ0 + V̂ (t) = −~
2

(ε+ A cosωt)σz , (1.19)

with σz the diagonal Pauli matrix, and longitudinal bias consisting of the dc component ε
and a sinusoidal modulation of amplitude A and frequency ω. In the absence of the periodic
drive, A = 0, is ĤTLS(t) = Ĥ0, with eigenstates | ↑〉, | ↓〉 being the eigenstates of σz with
eigenvalues σ = ±1, respectively. Explicitly, σz| ↑〉 = +| ↑〉, σz| ↓〉 = −| ↓〉.
For finite driving, A 6= 0, the solutions of the TDSE have the form

|ψσ(t)〉 = eiσ(
1
2
εt+A

ω
sinωt)|σ〉 , σ = ± or (↓, ↑) . (1.20)

Here is meant that the eigenvalues take the value ±1 but the states or eigenvalues are indexed
through the spin. Hence the Floquet states and quasi-energies are, respectively,

|uσ,n(t)〉 = |σ〉eiσ
A
ω

sinωte−inωt , Eσ,n = −σ~ε/2− n~ω . (1.21)

We can use the expansion of the periodic term in Bessel functions,

eiσ
A
ω

sinωt =
∑
k

eiσkωtJk

(
A

2ω

)
, (1.22)

where Jk(x) is the k-th Bessel function of the first kind, to express the above states in the
Sambe space. It holds

|uσ,n〉〉 = |σ〉
∑
l

Jσ(n−l)

(
A

2ω

)
|l) . (1.23)

The quasi-energy spectrum of the driven TLS is shown in Fig. 1.1 as a function of the static
bias. It exhibits exact degeneracies any time that one satisfies the condition

Eσ,n = Eσ̄,m , m 6= n ⇔ ε = mω . (1.24)
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Figure 1.1: Exact crossing in the Floquet spectrum of a longitudinally driven TLS against static
bias.

This equality can be interpreted as a resonance induced by the absorption or emission of
photons. Such resonance is shown in Fig. 1.1 for the case of a longitudinally driven two-level
system (TLS). In the figure and for later use the notation Eσ,n = ~εσ,n is used. Additionally,
εσ,0 = εσ. Notice that ε↓,n − ε↑,m = ε− (m− n)ω. Hence, ε↓,1 − ε↑,0 = ε− ω.

1.4.2 The driven two-level system with longitudinal and trans-
verse coupling

We turn to the action of a transverse coupling, e.g. caused, for a spin 1/2 system, by an
external magnetic field. The driven Hamiltonian reads

ĤTLS(t) = −~
2

[∆σx + (ε+ A cosωt)σz] , (1.25)

where σz and σx are the Pauli matrices, and as basis states we choose the eigenstates | ↑〉,
| ↓〉 of σz. The coupling strength ∆ between those two basis states is time independent,
whereas the bias point consists of the dc component ε and a sinusoidal modulation of the
amplitude A and frequency ω. Noticeably, despite its apparent simplicity, such Hamiltonian
cannot be solved exactly!
Let us now get advantage of the periodicity of the driving and work in the Sambe space,
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Figure 1.2: Floquet spectrum of a driven TLS against static bias. One notices the occurrence
of avoided crossings at the m-th photon resonance of magnitude ∆n. Parameters are ω = 2∆,
A = 3∆.

with basis states {|uσ,n〉〉}. It holds for the Floquet Hamiltonian,

HTLS = ~



. . . |u↑,n〉〉 |u↓,n〉〉 |u↑,n+1〉〉 |u↓,n+1〉〉 |u↑,n+2〉〉 |u↓,n+2〉〉

|u↑,n〉〉 ε↑,n −1
2
∆0 0 −1

2
∆−1 0 −1

2
∆−2

|u↓,n〉〉 −1
2
∆0 ε↓,n −1

2
∆1 0 −1

2
∆2 0

|u↑,n+1〉〉 0 −1
2
∆1 ε↑,n+1 −1

2
∆0 0 −1

2
∆−1

|u↓,n+1〉〉 −1
2
∆−1 0 −1

2
∆0 ε↓,n+1 −1

2
∆1 0

|u↑,n+2〉〉 0 −1
2
∆2 0 −1

2
∆1 ε↑,n+2 −1

2
∆0

|u↓,n+2〉〉 −1
2
∆−2 0 −1

2
∆−1 0 −1

2
∆0 ε↓,n+2

. . .


(1.26)

with Eσ,n = ~εσ,n and where we defined

∆n−l ≡ ∆〈〈u↑,n|σx|u↓,l〉〉 = Jn−l

(
A

2ω

)
∆ . (1.27)

In the following we call |Φα,n〉〉 the Floquet functions diagonalizing the Floquet Hamiltonian
Eq. (1.26), with α = ±. Approximate forms will be discussed in the next subsection. The
resulting Floquet spectrum is shown in Fig. 1.2. We notice now the occurrence of avoided
crossing at the position where the longitudinally driven TLS had exact crossings. Noticeably,
the avoided crossings are given by the dressed tunneling splittings, and hence their magnitude
depends on the ratio A/ω.
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1.4.3 Generalized rotating wave approximation

When looking at the spectrum of the unperturbed system, ∆ = 0, the system is resonant
any time the dc-bias fulfills the condition ε = mω. As long as the transverse coupling is a
small perturbation ω,� ∆, then HTLS will exhibit a similar energy spectrum. The largest
corrections come from the matrix elements connecting the (almost) degenerate levels. Hence,
in first approximation, we can diagonalize an effective 2×2 Hamiltonian of the kind

Heff
TLS = ~

(
ε↑,n −1

2
∆−m

−1
2
∆−m ε↓,n+m

)
. (1.28)

One finds the eigenergies

~εRWA
−,n = ~[(−n− 1

2
m)ω − 1

2
ΩRWA
m ] , (1.29)

~εRWA
+,n+m = ~[(−n− 1

2
m)ω +

1

2
ΩRWA
m ] (1.30)

with the frequency

ΩRWA
m =

√
(−ε+mω)2 + ∆2

−m . (1.31)

The corresponding eigenstates are

|ΦRWA
−,n 〉〉 = − sin

θm
2
|u↑,n〉〉 − sgn(∆−m) cos

θm
2
|u↓,n+m〉〉 , (1.32)

|ΦRWA
+,n+m〉〉 = cos

θm
2
|u↑,n〉〉 − sgn(∆−m) sin

θm
2
|u↓,n+m〉〉 , (1.33)

where tan θm = |∆−m|
−ε+mω for 0 < θm ≤ π. The quasi-energy spectrum in the RWA near the

resonance is shown in Fig. (1.3).

1.4.4 Van Vleck perturbation theory

Besides the simple RWA, also more sophisticated approximation schemes can be used if one
wants to account for higher order effects in ∆, such as a shift in the oscillation frequency
Ωm or, in the presence of dissipation, the correct order of magnitude of the relaxation and
dephasing rates [2]. The method of choice is for this case Van Vleck perurbation theory

(VVPT). A unitary transformation Û = eiŜ is applied in order to construct an effective
Hamiltonian which exhibits, to a certain order in the perturbation, the same eigenenergies
as the original Hamiltonian but only connects almost degenerate levels. In the case of the Flo-
quet Hamiltonian, the effective Hamiltonian then becomes Heff

VV = exp(iŜ)HTLS exp(−iŜ),
with the transformation matrix Ŝ evaluated up to a given order order in ∆. The so-obtained
effective Hamiltonian for an m-photon resonance again consists of 2 × 2 blocks; however,
compared to the one of the previous section, it has corrected diagonal entries. For example,
within second order VVPT, we find

Heff
VV = ~

(
ε↑,n − 1

4

∑
l 6=−m

|∆l|2
ε+lω

−1
2
∆−m

−1
2
∆−m ε↓,n+m + 1

4

∑
l 6=−m

|∆l|2
ε+lω

)
. (1.34)

8



Figure 1.3: Floquet spectrum of a driven TLS in the rotating-wave approximation against static
bias.

The above correction δm = 1
4

∑
l 6=−m

|∆l|2
ε+lω

in turn affects the resonance condition, the oscilla-
tion frequency and the eigenvectors. Specifically, the RWA formulas remain valid upon the
replacements ε = mω → ε = mω − 2δm, Ωm → ΩVV

m , θm → θVV
m , respectively.

1.5 Dynamics

The properties of the driven TLS are conveniently described in terms of the density operator
ρ̂(t). In the Floquet basis, it holds

ρα,β(t) = 〈Φα(t)|ρ̂(t)|Φβ(t)〉 , α, β = ± , (1.35)

whereby ρ+,+(t) + ρ−,−(t) = 1 for all t, and ρ−,+(t) = ρ∗+,−(t). We assume that at time t = 0
the system was prepared in the state | ↓〉. In other words, at time t = 0 the density operator
is described by the pure state ρ̂(t = 0) = | ↓〉〈↓ |. The observable of interest, relevant also
in qubit experiments, is taken to be the survival probability

P↓→↓(t) = 〈↓ |ρ̂(t)| ↓〉 . (1.36)

The transition probability is in turn P↓→↑ = 1− P↓→↓. From the physical point of view, the
system is prepared in a state which is not the eigenstate of the full Hamiltonian, and hence
coherent oscillations are expected. Importantly, the period of the oscillations will depend in
a non trivial way on both the couplings ∆m, the driving frequency ω and the amplitude A.
In order to find the density operator, we simply look at the differential equation it obeys.
From the Floquet equation it soon follows

ρ̇α,β(t) = −i(εα − εβ)ρα,β(t) , (1.37)
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Figure 1.4: Survival probability of a driven TLS in the rotating-wave approximation against Van
Vleck perurbation theory and the exact numerical solution. Parameters are ε/∆ = 4, ω/∆ = 4 and
A/∆ = 4.1 .

so that

ρα,α(t) = ρα,α(0) ,

ρα,β(t) = ρα,β(0)e−i(εα−εβ)t α 6= β . (1.38)

The starting conditions are calculated through

ρα,β(0) = 〈Φα(0)| ↓〉〈↓ |Φβ(0)〉 . (1.39)

Plugging the above solution in the definition of the survival probability, we obtain

P↓→↓(t) = 〈↓ |ρ̂(t)| ↓〉 =
∑
α,β

ρα,β(t)〈↓ |Φα(t)〉〈Φβ(t)| ↓〉 . (1.40)

With focus on an m-photon resonance and using the RWA, it holds

ρ−,+(t) = ρ−,+(0)e−i(mω+Ωm)t . (1.41)

with Ωm =
√

(−ε+mω)2 + ∆2
−m. Using the above formulas, one finds

PRWA
↓→↓ (t) = cos2(Ωmt/2) + cos2 θm sin2(Ωmt/2) , (1.42)

showing that the system displays oscillations with frequency Ωm. For the case of the exact
RWA resonance ε = mω and finite ∆−m, the RWA mixing angle is θm = π/2, and one finds

PRWA
↓→↓ (t) = cos2

(
Jm

(
A

ω

)
∆

2
t

)
. (1.43)
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Figure 1.5: Coeherent destruction of tunneling in a driven TLS. The rotating-wave approximation
and second order Van Vleck perurbation theory predict exact or strong localization, respectively.
The numerical results in contrast show complete population inversion despite with a low oscillation
frequency Ωm. The system is near a three-photon resonance. Parameters are ε/∆ = 6.0, ω/∆ = 2.0
and A/∆ = 12.7603 .

Hence, we have found that a drive can induce coherent oscillations with a period which
depends on how many photons are necessary to achieve the resonance. The oscillation
period also depends on how close the system is to the resonance through the detuning δ.
If the Van Vleck perturbation theory is applied up to second, the result above gets modified,
in the sense that

PVV
↓→↓(t) = cos2(ΩVV

m t/2) + cos2(θVV
m ) sin2(ΩVV

m t/2) + P
(1)
↓→↓(t) + P

(2)
↓→↓(t) , (1.44)

where the last two terms are corrections in first and second order in ∆. As seen in Fig. 1.4,
this is reflected in a frequency shift as well as in fast oscillations not visible in the RWA.

1.5.1 Coherent destruction of tunneling

One counterintuitive application of strong driving fields is the possibility to bring the Rabi-
like oscillation to a complete standstill by appropriately tuning the drving frequency or its
amplitude. This effect goes under the name of coherent destruction of tunneling (CDT). It
has been found in [3] for a driven, symmetric double-well potential. The effect was later
discussed for driven TLSs. For a symmetric TLS (ε = 0) and for high enough driving fre-
quencies ω > ∆ this phenomenon was predicted to happen approximately at the zeros of
J0(A/ω), as can also be seen from Eq. (16). For a nonzero static bias and high frequencies,
the necessary conditions for CDT are ε = mω and Jm(A/ω) = 0. The survival probability
at the three-photon resonance is shown in Fig. 1.5. It shows a comparison between the RWA
and Van Vleck dynamics to second-order and an exact numerical treatment of the Floquet
Hamiltonian for the above parameters. For the RWA, we see a complete destruction of tun-
neling because the driving-induced oscillations are not accounted for. Also, within the Van
Vleck description, the coherent oscillations are strongly suppressed; however, we notice fast
oscillations because of the external driving. The situation changes strongly for the numerical
graph: instead of a localization, a complete inversion of the population occurs; CDTseems
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Figure 1.6: Driving-induced tunneling oscillations. Parameters are ε/∆ = 5.9001 (exact reso-
nance), ω/∆ = 2.0 and A/∆ = 3.0. Three approaches are compared: a complete numerical solution
of the Floquet Hamiltonian, the second-order Van Vleck approach, and the RWA approach. For
the first two approaches, complete population inversion is predicted.

to have vanished completely, as the exact oscillation frequency Ωm is not vanishing. Consid-
ering, however, the time scale in Fig. 15(a), we notice that the period is rather large. For
short times, see Fig. 1.5(b), also the numerical dynamics appear to be localized.

1.5.2 Driving induced coherent oscillations

An effect contrary to the CDT are driving-induced tunneling oscillations (DITO). It has
been predicted, see e.g. in [5], and experimentally shown in [6] for a Cooper pair box, that
for a high static energy bias, ε � ∆ and for high driving frequency, ω � ∆, coherent
oscillations with frequency |J−m(A/ω)| and large amplitude are induced if ε ≈ mω. In a
later experiment [7], also based on a Cooper pair box, the full evolution of the resonances
was obtained, including the CDT condition. In both [6] and [7] a dressed state approach
was used, where the electromagnetic field is quantized.
The DITO are often also named Rabi oscillations even though in the original problem of Rabi
[4] a circularly polarized driving field couples to the TLS. As a consequence, the obtained
frequency of the oscillations is linear in A. Notice that such linearity of the oscillations with
the driving amplitude is also recovered for the longitudinally driven TLS for weak driving
fields A� ω and in the vicinity of the first photon resonance ε = ω. In this case linearization
of the first Bessel function predicts in fact

J1(A/ω) ≈ A/ω . (1.45)

The driving-induced tunneling oscillations are shown for the case of a three-phonon resonance
in Fig. 1.6. For the Van Vleck dynamics one finds the main oscillation frequency ΩVV

3 =
∆|J−3(A/ω)|.

1.5.3 Conventional Rabi oscillations

The problem of a driven two-level atom with transverse and longitudinal components was
already discussed by Rabi in the late thirties [4]. However, Rabi did not include a static bias
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Figure 1.7: (a) Schematic of a Cooper-pair box and an additional probe electrode. (b) Control
of the quantum states using Rabi oscillations. The solid lines represent relative energies of two
charge states |0〉 and |1〉 as a function of total gate-induced charge Qt . Black circle: initial state.
Gray circles: two states under Rabi oscillations. The final state is a superposition of the two states
shown by black and white circles. (c) Schematic waveform of the voltage applied to the pulse gate.
Figure from [6].

and moreover explicitly considered a circularly polarized drive, making the problem exactly
solvable. The Rabi Hamiltonian reads

ĤRabi
TLS (t) = −~

2
∆σz −

~
2
A[cos(ωt)σx + sin(ωt)σy] . (1.46)

Defining the detuning δ = ω−∆, one gets Rabi oscillations for the survival probability with
frequency

ΩRabi =
√
δ2 + A2 . (1.47)

Notice that such Hamiltonian can be obtained starting from Eq. (1.25) for the transverse
and longitudinal-driven TLS by setting ε = 0, and performing a rotation of π/2 which
changes σz → σx and σx → σz. Furthermore, the additional term proportional to σy has to
be added. This amounts to start from linearly polarized light and, under the assumption
of weak, resonant driving ω ≈ ∆, perform a rotating-wave approximation which neglects
counter-rotating terms.
Interestingly, in the Rabi problem only a 1-photon resonance is allowed. The possibility of
multiphoton resonances in the longitudinally driven case is ensured by the counter-rotating
terms.

1.6 Comparison with experiments

Early experiments proving the strong coupling of a TLS to intense microwave radiation used
a Cooper pair box (CPB), a superconducting circuit in which the number of Cooper pairs
on the box plays the role of the qubit. Importantly, the TLS parameters can be tuned
electrostatically via a gate voltage. The CPB Hamiltonian has the canonical form as in
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Figure 1.8: Oscillation frequency Ωm with m = 0, 1, and 2, respectively, for 0-, 1-, and 2-photon
processes as a function of irradiated microwave amplitude. Lines are the first-kind Bessel functions
of the corresponding order, Jm, where α is proportional to the driving amplitude and inversely
proportional to the frequency. Data from [6].

Eq. (1.25) upon identifying

~ε = −4EC(Qt/e− 1) = , ~∆ = EJ , (1.48)

with EJ the Josephson coupling energy. The charging energy is provided by the total ca-
pacitance CΣ of the junction and reads EC = e2/CΣ. The gate induced charge is defined
as Qt = CgVg + CpVp + CbVb and can be tuned through a gate voltage Vg. In the regime
EC � EJ the charge representation set by the number states |0〉, |1〉 is appropriate. The
system is shown in Fig. 1.7. Microwave radiation is then applied to the qubit, hence realizing
the model discussed above. The oscillation frequencies at resonance are extracted from os-
cillations which are recorded upon sweeping a time interval ∆t. They are shown in Fig. 1.8.
The argument of the Bessel function is proportional to the applied microwave voltage and
the inverse of the fre quency, α = (2eVac/hf)(Cp/CΣ).
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